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Stability of convection in a horizontal channel
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The stabilization of buoyant flows by a magnetic field is an important matter for
crystal growth applications. It is studied here when the cavity is an infinite channel
with rectangular cross-section typical of horizontal Bridgman configurations and when
the magnetic field is applied in the vertical and transverse directions. The steady basic
flow solution is first calculated: the usual counter flow structure is modified by the
magnetic field and evolves towards jets in the cross-section corners when the magnetic
field is vertical and towards a more uniform structure in the transverse direction when
the magnetic field is transverse. The stability results show a very good stabilization
of the convective flows for a vertical magnetic field with exponential increases of the
thresholds for any width of the channel and for various Prandtl numbers Pr. The
results for a transverse magnetic field are more surprising as a destabilizing effect
corresponding to an initial decrease of the thresholds is obtained at Pr = 0 and for
small channel widths. A kinetic energy budget at the thresholds reveals that the main
destabilizing factor is connected to the vertical shear of the longitudinal basic flow and
that it is the modifications affecting this shear energy which are mainly responsible
for the variation of the thresholds when a magnetic field is applied.

1. Introduction
In crystal growth process from the melt, time-dependent oscillatory flow motion

implies unavoidable crystal–liquid interface oscillations which influence solute
segregation in the crystal. Thus, controlling the fluid motion to reduce or to eliminate
the temperature fluctuations becomes necessary to improve the crystal quality. In
material processing, static or rotating magnetic fields are used for a contactless
control of fluid flow and mass transport during the processes. Both static and
rotating magnetic field can lead to a suppression of the temperature fluctuations
(Hurle, Jakeman & Johnson 1974; Dold & Benz 1995, 1997; Davoust et al. 1999;
Juel et al. 1999). However, the two fields act on the fluid in different ways: for a

† Email address for correspondence: hamda.benhadid@univ-lyon1.fr



298 D. V. Lyubimov, T. P. Lyubimova, A. B. Perminov, D. Henry and H. Ben Hadid

static field the strength of the Lorentz forces (body forces) depends on the vigour of
the convective flow and diminishes as the intensity of the convective flow decreases,
whereas rotating magnetic field can induce a flow even in a melt initially at rest.

In the last decades, the use of magnetic fields in material processing was mainly
limited to stationary magnetic fields owing to their damping effects on the melt
motion and thus the reduction of temperature fluctuations. The strength of the
applied stationary field is generally in the range of several hundred millitesla (Series
& Hurle 1991; Hurle 1993). The pioneering experimental works on this problem
were carried out by Utech & Flemings (1966) and Hurle et al. (1974). They observed
thermal oscillations in the flow and showed that a magnetic field applied orthogonally
to the main convective flow can be used to damp the oscillations. Juel et al.
(1999) investigated the effect of horizontal transverse magnetic field on temperature
fluctuations in a horizontal rectangular cavity of aspect ratio four. Their combined
experimental and numerical investigations show that the basic flow state in the
rectangular box filled with liquid gallium is modified into a new two-dimensional
configuration. A value of Ha = 64 was sufficient to damp the initial temperature
fluctuations caused by buoyancy-driven convection. Based on the vertical temperature
difference in the centre of the cavity, the comparisons between the experimental and
numerical results are very good. In both cases, the vertical temperature difference
and similarly the maximum horizontal and vertical velocities have been found to
vary approximately as Ha−1 for Ha > 100. Experiments by Davoust et al. (1999)
demonstrated the damping of thermogravitational flow of mercury in a horizontal
circular cylindrical cavity of aspect ratio 10 by means of a uniform vertical magnetic
field. The structure of the steady flow is investigated at large values of Hartmann
number up to 235 and a good qualitative agreement is found with the asymptotic
predictions of Garandet, Alboussière & Moreau (1992). A study of time-dependent
convective flow is also performed which shows in particular that damping is found
to occur for small values of the Hartmann number between 1 and 10. Recent
experiments by Hof, Juel & Mullin (2003, 2005) focused on the directional effect
of the magnetic field in a rectangular enclosure of relative dimensions 5 × 1.3 × 1
(length × width × height). They studied the damping of the steady convective flow
(Hof et al. 2003) and the stabilization of the oscillatory transitions (Hof et al. 2005).
They found that the oscillatory thresholds scale exponentially with Ha for the three
principal orientations of the magnetic field. For both steady and oscillatory flows, the
magnetic field is most effective when it is applied in the vertical direction, compared
with the transverse and longitudinal directions.

The control of electrically conducting fluid flows with the help of external magnetic
fields seems to be promising. Therefore, current research has intensified in the field
of magnetohydrodynamic convection and several new results were obtained in the
last decade. In this context, we particularly refer to the papers of Garandet et al.
(1992) and Alboussière, Garandet & Moreau (1993, 1996). These authors proposed
analytical derivations often based on asymptotic models at large Hartmann number.
For a vertical magnetic field, Garandet et al. (1992) first considered a two-dimensional
rectangular cavity and showed that the decrease of the parallel flow in the bulk varied
as Ha−2. The influence of the cross-section shape on the magnetic damping in the case
of long horizontal cavities was then studied analytically in Alboussière et al. (1993).
In the case of electrically insulating boundaries, the nature of the symmetry of the
cross-section was found to govern the magnitude and the structure of the damped
velocity. Indeed, the magnetically damped convection velocity varies as Ha−2 when
the cross-section has a horizontal plane of symmetry, and Ha−1 for non-symmetrical
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shapes. In contrary, when the walls are perfectly conducting, the damped velocity
always varies as Ha−2. Finally, Alboussière et al. (1996) considered magnetic fields of
any orientation and obtained interesting results on the damping of the flows which
depends on the symmetry of the configuration described as regular or singular.

Ozoe & Okada (1989) reported the results of a three-dimensional numerical
investigation of the directional effect of a steady magnetic field on side wall convection
in a cubic cavity filled with molten silicon. They found that the longitudinal orientation
of the magnetic field was most effective for suppressing convection, whereas the
transverse direction was least effective. These results are questionable as the mesh
used for the calculations was probably too coarse to get very accurate results.
Nevertheless, the results of an experimental study using gallium in a similar cavity
are later reported by the same authors (Okada & Ozoe 1992), which qualitatively
confirm the numerical findings with a larger decrease of the Nusselt number for the
longitudinal and vertical magnetic fields. Ben Hadid & Henry (1996, 1997) carried out
calculations of three-dimensional flows of mercury for Pr = 0.026 in both cylindrical
and rectangular cavities of aspect ratio 4, for different orientations of the magnetic
field. They found good agreements with the analytical estimates of Garandet et al.
(1992) and Alboussière et al. (1993, 1996) for the damping of the velocity field.
For the rectangular cavity, the investigations include free-surface effects. Interesting
changes in the flow structure are reported and these appear to be closely linked
to the distribution of the induced electric currents and their interaction with the
applied magnetic field. Three-dimensional numerical simulations of melt convection
carried out by Baumgartl & Müller (1992) in a cylindrical geometry submitted to
a constant magnetic field show that only the models including the electric potential
equation agree well with the experimental results. The numerical results of Baumgartl,
Hubert & Müller (1993) show that for Ha ∼ 20 (|B| ∼ 7mT ) flow fluctuations with
typical amplitudes of about 4 % of the mean values are suppressed and the resulting
steady flow has essentially the same features as the unsteady one. Ben Hadid, Henry
& Touihri (1997b) confirmed that a static field of small intensity can be used to
significantly damp temperature fluctuations caused by time-dependent buoyancy-
driven convection. More recently, Henry et al. (2008a, b) studied the effect of the
magnetic field on the instability thresholds in parallelepipedic cavities. In a 4 × 2 × 1
cavity, they obtained exponential increases of the thresholds with the intensity of
the magnetic field and showed that the vertical direction of the magnetic field was
most effective, confirming the experimental results of Hof et al. (2005). They further
proposed a kinetic energy analysis where they showed that the evolution of the
threshold was strongly connected to changes affecting the main destabilizing shear
energy term.

From these studies, it can be generally stated that an increase in the strength of
the applied magnetic field leads to several fundamental changes in the properties of
thermal convection. The convective circulation progressively loses its intensity and
when Ha reaches a certain critical value, which is found to depend on the direction
of the applied magnetic field (longitudinal, vertical or transverse), decrease of the
flow intensity takes on an asymptotic form with important changes in the structure
of the flow circulation. For high Hartman number, the flow structure exhibits three
separated regions: the core flow, the Hartman layers of thickness Ha−1 which develop
along walls which are perpendicular to the applied magnetic field and the parallel
layers of thickness Ha−1/2 appearing along walls parallel to the applied magnetic
field. Note that viscous effects are confined to these layers, whereas the remainder of
the flow, namely the core flow, may be considered as inviscid. These modifications
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Figure 1. Studied configuration.

at high Hartmann number are mainly governed by the electric current circulation
and can be explained by analysing its paths and the resulting Lorentz forces. In the
case of electrically insulating boundaries, for instance, the resulting electric currents
form closed loops inside the cavity, and a significant braking effect on the convection
is generated in regions where the electric current vectors are perpendicular to the
applied magnetic field, whereas a weak braking effect is obtained in regions where
the electric current is rather parallel to the applied magnetic field, generally near side
walls where over velocities will develop.

In this paper the influence of a static magnetic field on the stability of buoyancy
driven convection is investigated. As in Lyubimova et al. (2008), we consider an
infinitely long horizontal channel of rectangular cross-section in which the convective
flow is generated by a longitudinal temperature gradient. This flow is submitted to a
static magnetic field perpendicular to the channel axis, either vertical or horizontal.
We present results on the influence of the magnetic field on the convective flows and
on the instabilities which develop in such flows, for various cross-sections and in a
wide range of Prandtl number values. A kinetic energy analysis is finally performed
to shed light on the physical mechanisms involved in the observed variations of the
thresholds.

2. Governing equations and boundary conditions
A viscous non-compressible fluid with constant electrical conductivity σe fills a

horizontal channel of rectangular cross-section S of height H (along the y-axis) and
width L (along the x-axis) (figure 1). An aspect ratio is defined for the channel by
l =L/H . The fluid is subject to a temperature gradient (∇T )∗ which is colinear with

the z-axis (the third axis of the cavity) and to a constant magnetic field �B0. The
fluid is assumed to be Newtonian with constant kinematic viscosity ν and thermal
diffusivity κ . The usual Boussinesq approximation is employed, which means that
the density variations are restricted to the buoyancy term and assumed to be linear
with the temperature variations. As shown by Moreau (1990) and later used by
Ben Hadid, Henry & Kaddeche (1997a), Ben Hadid & Henry (1997), Juel et al.
(1999) and Kaddeche, Henry & Ben Hadid (2003), in liquid metals the Lorentz body
force induced by the magnetic field can be expressed as

�F ∗ = J∗ × �B0 = σe(�E
∗ + V ∗ × �B0) × �B0, (2.1)
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where J∗ is the density of electric current, �E∗ = −∇∗Φ∗ is the electric field, Φ∗ is
the electric potential and V ∗ is the flow velocity. The quantities with a star refer to
dimensional quantities.

Using H , H 2/ν, ν/H , ρ0ν
2/H 2, (∇T )∗H , νB0 and σeνB0/H as scales for length, time,

velocity, pressure, temperature, electric potential and electric current, respectively, the
governing equations for the problem are

∂V
∂t

+ (V · ∇) V = −∇P + ∇2V + Gr T ey + Ha2 J × eB0
, (2.2)

∂T

∂t
+ (V · ∇T ) =

1

Pr
∇2T , (2.3)

∇ · V = 0, (2.4)

J = −∇Φ + V × eB0
, (2.5)

∇ · J = 0, (2.6)

where the dimensionless variables are the velocity vector V = (U, V, W ), the pressure
P , the temperature T , the electric potential Φ and the electric current density vector

J . ey and eB0
are unit vectors in the vertical direction and in the direction of �B0,

respectively. Combining the continuity equation for J (2.6) and Ohm’s law (2.5), we
obtain the dimensionless equation governing the electric potential:

∇2Φ = eB0
· (∇ × V ) . (2.7)

The boundary conditions applied on the planes x = ± l/2 and y = ± 1/2 are:
• No-slip condition for the velocity, V = 0;
• Fixed temperature (thermally conductive walls);
• Zero current flux (electrically insulating walls), ∂Φ/∂n= 0, where n is the unit

normal vector.
The governing system (2.2)–(2.7) depends on four non-dimensional parameters: the
Hartmann number Ha = |B0|H

√
σe/ρ0ν, the Grashof number Gr = gβ(∇T )∗H 4/ν2, the

Prandtl number Pr = ν/κ and the transverse aspect ratio l = L/H .

3. Basic flow
As in Lyubimova et al. (2008), we look for a solution in which the velocity,

the temperature deviation from the distribution which corresponds to the uniform
longitudinal temperature gradient, and now additionally the electric potential do not
depend on z:

V = V (x, y) = (�U (x, y), W (x, y)), T = z + Θ(x, y) and Φ = Φ(x, y). (3.1)

Then the pressure is a linear function of z (Lyubimova et al. 2008):

P = Gr y z + Π(x, y) + C z, (3.2)

where C is a constant.
Substituting the expressions (3.1) and (3.2) into (2.2)–(2.7), we obtain:

∂�U

∂t
+ (�U · ∇s)�U = −∇sΠ + ∇2

s
�U + Gr Θ ey + Ha2�f , (3.3)

∂W

∂t
+ (�U · ∇s)W = −Gr y − C + ∇2

sW + Ha2Fz, (3.4)
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∂Θ

∂t
+ (�U · ∇s)Θ + W =

1

Pr
∇2

sΘ, (3.5)

∇s · �U = 0, (3.6)

�F = (−∇Φ + V × eB0
) × eB0

, (3.7)

∇2Φ = eB0
· (∇ × V ), (3.8)

where �F =(�f , Fz), �f = (Fx, Fy), �U = (U, V ), ∇s is the two-dimensional differentiation
operator defined upon the plane (x, y). To obtain the expression for C, we integrate
(3.4) on the cross-section S ((x, y) plane) and take mass conservation,

∫
S
WdS =0,

into account. We obtain

C =
1

S

∫
S

∇2
sW dS +

Ha2

S

∫
S

Fz dS. (3.9)

Let us assume that eB0
lies in the (x, y) plane and define the angle α between the

magnetic field direction and the x-axis. By introducing the stream function and the
vorticity for the transversal flow which are such that

U =
∂ψ

∂y
, V = −∂ψ

∂x
, Ω = (∇ × V )z , (3.10)

we can rewrite (3.3)–(3.9) in the form:

∂Ω

∂t
+ J(Ω, ψ) = ∇2

sΩ + Gr
∂θ

∂y
+ Ha2

(
∂2ψ

∂x∂y
sin 2α +

∂2ψ

∂y2
sin2 α +

∂2ψ

∂x2
cos2 α

)
,

(3.11)

Ω = −∇2
sψ, (3.12)

∂W

∂t
+ J (W, ψ) = −Gr y − C + ∇2

sW + Ha2

(
∂Φ

∂y
cos α − ∂Φ

∂x
sinα − W

)
,

(3.13)

∂Θ

∂t
+ J (Θ, ψ) + W =

1

Pr
∇2

sΘ, (3.14)

∇2
sΦ =

(
∂W

∂y
cos α − ∂W

∂x
sinα

)
, (3.15)

C =
1

S

∮
Γ

∂W

∂n
dΓ +

Ha2

S

∫
S

(
∂Φ

∂y
cosα − ∂Φ

∂x
sinα

)
dS, (3.16)

where J(q, q ′) = (∂q/∂x)(∂q ′/∂y) − (∂q/∂y)(∂q ′/∂x), and Γ is the contour bounding
the cross-section S. Finally, the boundary conditions become

ψ |Γ =
∂ψ

∂n

∣∣∣∣
Γ

= Θ |Γ = W |Γ =
∂Φ

∂n

∣∣∣∣
Γ

= 0. (3.17)

The calculation of the basic flows, solutions of these equations, has been performed
with the same numerical methods as in Lyubimova et al. (2008). The effect of the
grid size has been tested and, for l = 1, grids with 101 × 101 points for a vertical
magnetic field at Pr= 0, 91 × 91 points for a horizontal magnetic field at Pr =0, and
71 × 71 points for Pr �= 0 where the basic flow is weaker than for Pr = 0, were chosen
as they correctly reproduced the asymptotic behaviours at large Ha (Ben Hadid &
Henry 1994, 1997).
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3.1. Zero Prandtl number case

According to Lyubimova et al. (2008), at Pr = 0 the problem (described in (3.11)–
(3.17)) admits a steady solution in which only the longitudinal component of the
velocity is non-zero. The equations and boundary conditions are thus reduced to:

0 = −Gr y − C + Ha2

(
∂Φ

∂y
cosα − ∂Φ

∂x
sinα − W

)
+ ∇2

sW, (3.18)

∇2
sΦ =

(
∂W

∂y
cosα − ∂W

∂x
sinα

)
, (3.19)

W |Γ =
∂Φ

∂n

∣∣∣∣
Γ

= 0. (3.20)

In this paper, we only consider horizontal (α = 0) and vertical (α = π/2) magnetic
fields. In both cases, the solutions have well defined symmetries: the longitudinal
velocity W is odd with respect to y and even with respect to x, and the electric
potential Φ is even with respect to both x and y coordinates in the case α = 0 and
odd with respect to both coordinates in the case α = π/2. The constant C turns out
to be equal to zero in both cases.

As in the absence of magnetic field (Lyubimova et al. 2008), the velocity of the
flow described by (3.18)–(3.20) is proportional to Gr. In the lower part of the cavity,
the fluid moves in the direction of the applied temperature gradient, whereas in the
upper part, it moves in the opposite direction.

The problem, described in (3.18)–(3.20), is solved numerically as indicated in
Lyubimova et al. (2008). Figures 2 and 3 present the isolines of the velocity W and
the streamlines of the electric current J in the cross-section for the cases of vertically
aligned (α = π/2, figure 2) and horizontally aligned (α = 0, figure 3) magnetic fields.
Note that the streamlines of J in the cross-section are plotted from the current stream
function ψj which is such that J = ∇ × (−ψj ez).

In the case of the vertical magnetic field, the electric current corresponds to a
large current loop occupying most part of the cavity and thin current loops near
the top and bottom boundaries (figure 2b, d). At Ha =5, the flow is similar to the
one observed in the absence of magnetic field, and in the case of a strong magnetic
field (Ha = 100), the longitudinal flow is concentrated in jets near the corners of the
cross-section whereas the core of the cavity is more quiescent (figure 2a, c).

In the case of the horizontal magnetic field, the electric current flows from the
top and bottom towards the centre of the cavity along the vertical y-axis and then
sidewards along the x-axis, before returning along the vertical walls, thus forming
four symmetrical electric current loops. These currents have maxima in areas adjacent
to the walls, and principally in the Hartmann layers perpendicular to the magnetic
field direction (figure 3b, d). Concerning the longitudinal flow structure, when the
Hartmann number gets large enough values, boundary layers with significant vertical
gradients of velocity appear near the horizontal walls in the parallel layers. The
velocity maxima are shifted towards the horizontal walls, and the flow becomes more
and more independent of the transverse direction (the direction of the magnetic field)
except close to the vertical walls in the thin Hartmann layers where strong gradients
appear (figure 3a, c).

According to the simulations, a stronger magnetic field yields a weaker flow in both
cases. Figure 4 presents the dependence of the maximal velocity on the Hartmann
number for l =1 and for vertical and horizontal magnetic fields. For a strong enough
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Figure 2. Isolines of the longitudinal velocity (a, c) and streamlines of the electric current
(b, d ) in the cross-section for the convective flow submitted to a vertical magnetic field at
Ha = 5 (a, b) and Ha = 100 (c, d ) and for Pr = 0 (Gr = 10 000, l = 1).

vertical magnetic field (Ha > 10), the maximal velocity Wmax obeys an hyperbolic law,
Wmax ∼ Ha−1, while the middle velocity Wmid (i.e. measured on the y-axis) experiences
a stronger decrease, Wmid ∼ Ha−2. The braking effect is also well pronounced for the
horizontal magnetic field, but it is less effective than for the vertical magnetic field.

All these results are in good agreement with those obtained for three-dimensional
cavities by Ben Hadid & Henry (1994, 1997).

3.2. Non-zero Prandtl number case

In the case of a non-zero Prandtl number, the problem does not admit plane-parallel
flow solutions (Lyubimova et al. 2008) and the full system of governing equations,
(3.11)–(3.17), has to be solved. The same numerical techniques as in Lyubimova et al.
are used. The calculations are made for Prandtl numbers in the range Pr =0.01–0.15
which corresponds to the liquid metals and for a cavity with a transverse aspect ratio
l =1. As follows from the results of Lyubimova et al. for Ha = 0, this range of Pr is
beyond the value Prt at which a sharp stabilization of the flow occurs, and the basic
flow at Ha =0 is characterized by the dominating role played by the four vortices
located near the sidewalls which influence the structure of the longitudinal flow.

For both magnetic field orientations, a braking of the flow is observed with similar
laws of velocity decrease as for Pr= 0. Figure 5 presents the isolines of the stream
function and the temperature in the cross-section at Pr = 0.1 and Ha =100 for the
two magnetic field orientations α = π/2 and α = 0. The longitudinal flow and electric
current structures in both cases are similar to those obtained for Pr= 0 (figure 2c, d
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Figure 3. Isolines of the longitudinal velocity (a, c) and streamlines of the electric current
(b, d) in the cross-section for the convective flow submitted to a horizontal magnetic field at
Ha = 5 (a, b) and Ha = 100 (c, d ) and for Pr =0 (Gr = 10 000, l = 1).
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Figure 4. Variation with Ha of the longitudinal velocity maxima: (1) global maximum for a
horizontal magnetic field, (2) global maximum and (3) maximum on the vertical mid-line for
a vertical magnetic field (Gr =10 000, Pr = 0, l = 1).

and figure 3c, d). This implies a smaller influence of the cross-section vortices on the
longitudinal velocity in the presence of a magnetic field than without magnetic field.
In fact the flow structure in the cross-section has evolved from the four-roll structure
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Figure 5. Streamlines of the velocity (a, c) and isolines of the temperature (b, d ) in the
cross-section for the convective flow submitted to a magnetic field, either vertical (a, b) or
horizontal (c, d ), at Ha = 100 and Pr = 0.1 (Gr = 10 000, l = 1).

obtained at Ha = 0. For both orientations of the magnetic field, the rolls are shifted
towards the vertical walls, and in the case of the vertical magnetic field four additional
rolls arise in the core (figure 5a, c). The temperature fields in the cross-section in the
two cases are also different (figure 5b, d): they reflect the difference in longitudinal
flow structures (figures 2c and 3c).

4. Stability analysis
Let us study the stability of the solutions we have obtained. The magnetic field

is still assumed to be in the (x, y) plane. The velocity, electric potential, pressure,
temperature and current density fields are now represented as the sum of the basic
solution and infinitesimal perturbations:

V = V 0 + V ′, P = P0 + P ′, T = T0 + Θ ′, Φ = Φ0 + Φ ′, J = J0 + J ′. (4.1)

These perturbations can be chosen as normal modes in the z direction:

(V ′, P ′, Θ ′, Φ ′, J ′) = (�v,p, θ, φ,�j )eikz+λt , (4.2)

where k is the wave number in the z direction and λ= λr + iλi is a complex growth
rate.

After substitution of the expressions (4.1) and (4.2) into the system (2.2)–(2.7),
linearization and projection onto the coordinate axes, we obtain the final governing
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equations and boundary conditions in the form:

λu = −(�U0∇s + ikW0)u − (�u · ∇s)U0 − ∂p

∂x
+

(
∇2

s − k2
)
u

+ Ha2
(
ikφ sinα + 1

2
v sin 2α − u sin2 α

)
, (4.3)

λv = −(�U0 · ∇s + ikW0)v−(�u · ∇s)V0 − ∂p

∂y
+

(
∇2

s − k2
)
v + Gr θ

+ Ha2
(
− ikφ cos α + 1

2
u sin 2α − v cos2α

)
, (4.4)

λw = −(�U0 · ∇s + ikW0)w − (�u · ∇s)W0 − ikp +
(
∇2

s − k2
)
w

+ Ha2
(

∂φ

∂y
cosα − ∂φ

∂x
sinα − w

)
, (4.5)

λθ = −(�U0 · ∇s + ikW0)θ − (�u · ∇s)Θ0 − w +
1

Pr

(
∇2

s − k2
)
θ, (4.6)

0 =
(
∇2

s − k2
)
φ −

(
ik u − ∂w

∂x

)
sinα −

(
∂w

∂y
− ik v

)
cosα, (4.7)

0 =
∂u

∂x
+

∂v

∂y
+ ikw, (4.8)

with at x = ± l/2 and y = ± 1/2:

�u|Γ =
∂φ

∂n

∣∣∣∣
Γ

= θ |Γ = 0, (4.9)

where�v = (�u, w) with �u= (u, v). V 0 = (�U0, W0) with �U0 = (U0, V0) and T0 = z + Θ0 are
the velocity and temperature fields for the basic solution.

After discretization of the governing equations, a generalized eigenvalue problem
is obtained:

A X = λB X, (4.10)

which is solved as indicated in Lyubimova et al. (2008). Now the unknown vector
X is such that X = (�v, θ, p, φ), i.e. it contains the fields of the perturbations of
velocity, temperature, pressure and electric potential. The stability computations were
performed using grids with typically for l = 1, 101 × 101 points for the cases at Pr =0
with a vertical magnetic field, 91 × 91 points for the cases at Pr =0 with a horizontal
magnetic field and 71 × 71 points for the cases at Pr �= 0.

4.1. Zero Prandtl number case

According to Lyubimova et al. (2008), in the absence of magnetic field and at zero
Prandtl number, a hydrodynamic steady instability mode related to the development
of vortices at the boundary between the upper and lower counter flows is the most
dangerous in a wide range of values of the aspect ratio l. The same steady mode
remains the most dangerous for the case Pr = 0 when a magnetic field is applied. The
results are given through curves showing the variation of the critical thresholds Grc

and wave numbers kc with Ha for different aspect ratios l. These curves are presented
in figures 6 and 7 for the vertical and horizontal magnetic fields, respectively.

The vertical magnetic field induces a strong stabilizing effect on the flow (figure 6a):
even a small increase of Ha results in a significant increase of the critical Grashof
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Figure 6. Variation of the critical Grashof number Grc (a) and wave number kc (b) as a
function of Ha for the convective flow submitted to a vertical magnetic field and for different
channel widths l (Pr = 0).

number. Moreover, the effect of stabilization is magnified by the decrease of the
aspect ratio l. The wavelength of the most dangerous perturbations is increased
with Ha (figure 6b). Such a strong increase of the thresholds (exponential laws) was
previously obtained for the steady hydrodynamic modes in the case of an infinite
layer (l → ∞) when a vertical magnetic field was applied (Kaddeche et al. 2003). A
comparison with the results of Kaddeche et al. obtained for Pr =0.001 shows that
the increase of the thresholds for the confined layer is still larger than for the infinite
layer. Exponential increases of the thresholds under vertical magnetic field were also
obtained for three-dimensional cavities, either experimentally (5 × 1.3 × 1 cavity, Hof
et al. 2005) or numerically (4 × 2 × 1 cavity, Henry et al. 2008b). In both cases, the
increase of the thresholds was found to be smaller than for the infinite layer, and
consequently also smaller than for the confined layer.

We may note that, in the confined layer, the hydrodynamic instability at Pr = 0
develops in the core of the section, i.e. in a zone where the flow evolves as Ha−2

similar to the evolution of the basic flow profile in the infinite layer. Moreover, it
was shown in Lyubimova et al. (2008) that a similar development of the instability in
the core of the section was observed for non-zero Prandtl numbers, until the strong
increase of the thresholds at Prt . From that, we can expect that in this Pr range,
similar strong stabilizations by the vertical magnetic field can be obtained.
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Figure 7. Variation of the critical Grashof number Grc (a) and wave number kc (b) as a
function of Ha for the convective flow submitted to a horizontal magnetic field and for different
channel widths l (Pr = 0).

The horizontal magnetic field, on the contrary, can destabilize the flow in the range
of small to moderate Hartmann number values: for small values of l, Grc decreases
with the increase of Ha, until it attains a minimum beyond which Grc begins to grow
(figure 7a). This effect is magnified by the decrease of l. The Hartmann numbers
corresponding to the minimal values of Grc decrease with the increase of the aspect
ratio l. When the cavity is wide enough (l � 1.4), there is no more minima in the
curves and the horizontal magnetic field has a continuous stabilizing effect on the
flow, but this effect is much weaker than that obtained with the vertical magnetic
field. As seen from figure 7(b), for small values of l, the wave numbers of the neutral
perturbations first increase with Ha until a maximum value and then start to decrease.
When l � 1.4, the critical wave numbers decrease monotonously. We may recall that in
the case of the infinite layer, the horizontal transverse magnetic field has no influence
on the hydrodynamic thresholds (Kaddeche et al. 2003) whereas its influence on
the thresholds in three-dimensional cavities (Hof et al. 2005; Henry et al. 2008b) is
stabilizing but less efficient than the influence of the vertical magnetic field.

4.2. Non-zero Prandtl number case

The calculations in the non-zero Prandtl number case were performed in the range
Pr = 0.01–0.15 and for a cavity with a transverse aspect ratio l = 1. According to
Lyubimova et al. (2008), all over this Prandtl number range, the hydrodynamic steady
instability is still the most dangerous. But, for l = 1, this Prandtl number range (which
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Figure 8. Variation of the critical Grashof number Grc (a) and wave number kc (b) as a
function of Ha for the convective flow submitted to a vertical magnetic field and for different
values of Pr (l = 1).

is beyond Prt ) corresponds more precisely to an instability which develops near the
side walls.

Both magnetic fields induce a stabilizing effect on the flow in the Prandtl number
range covered by the computations (figures 8a and 9a). This effect is, however, stronger
for the vertical magnetic field than for the horizontal magnetic field. Moreover, for
the chosen values of Pr, the stabilizing effect obtained with the vertical field is smaller
than that obtained at Pr =0 for the same aspect ratio. In fact, the instability occurs
here near the side walls, in a zone where, for the vertical magnetic field, the decrease
of the flow, and thus the decrease of the shear responsible for this hydrodynamic
instability, is smaller than in the core (progressive development of the longitudinal
jets). We can also note that, differently from the case Pr = 0 where an increase of the
critical threshold is associated to a decrease of the critical wave number, kc increases
with Ha in the chosen range of Pr (figures 8b and 9b).

Grc is also given as a function of Pr for Ha = 0 and Ha = 5 in figure 10. In the
absence of magnetic field, the variation of Grc with Pr is non-monotonous in the
Prandtl number range Pr =0.01−0.15 (Lyubimova et al. 2008). As seen from figure 10,
the vertical and horizontal magnetic fields, while increasing the thresholds, keep this
non-monotonous variation of Grc with Pr. Figure 10 also confirms that the vertical
magnetic field is more efficient in stabilizing the flow than the horizontal magnetic field.

5. Energy analyses
Energy analyses are performed for Pr= 0 to characterize the variation of the

thresholds when Ha is increased for both the vertical and horizontal magnetic fields.
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Figure 9. Variation of the critical Grashof number Grc (a) and wave number kc (b) as a
function of Ha for the convective flow submitted to a horizontal magnetic field and for different
values of Pr (l =1).
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Figure 10. Variation of the critical Grashof number Grc as a function of Pr for the convective
flow submitted to a magnetic field: crosses for Ha = 0, triangles for the vertical magnetic field
at Ha = 5 and diamonds for the horizontal magnetic field at Ha = 5 (l = 1).

The results are presented first as energy budgets and then as energetic contributions
to the critical Grashof number.

5.1. Fluctuating kinetic energy budgets

As in Lyubimova et al. (2008), an equation giving the fluctuating kinetic energy budget
can be derived from the linear stability equations, (4.3)–(4.5). In the case with magnetic
field and for Pr= 0 (basic flow reduced to W0, no temperature perturbations), the
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l = 0.7 l = 1

Ha E′
sx E′

sy E′
m Ha E′

sx E′
sy E′

m

0 −0.0584 1.0584 0 0 −0.0306 1.0306 0
1 −0.0335 1.0612 −0.0277 1 −0.0277 1.0352 −0.0075
2 −0.0349 1.0697 −0.0348 2 −0.0282 1.0474 −0.0192
3 −0.0372 1.0841 −0.0469 3 −0.0300 1.0661 −0.0361
4 −0.0406 1.1066 −0.0660 5 −0.0334 1.1066 −0.0732

6 −0.0361 1.1269 −0.0908
7 −0.0394 1.1460 −0.1066

Table 1. Fluctuating kinetic energy contributions: E′
sx and E′

sy , production by shear; E′
m,

dissipation by magnetic forces (l = 0.7 and l =1, vertical magnetic field, Pr =0).

l = 0.7 l = 1.5

Ha E′
sx E′

sy E′
m Ha E′

sx E′
sy E′

m

0 −0.0487 1.0487 0 0 −0.0199 1.0199 0
5 −0.0348 1.0707 −0.0359 5 −0.0258 1.0971 −0.0713

14 (min) −0.0376 1.2259 −0.1883 12 −0.0374 1.2612 −0.2238
24 −0.0306 1.2973 −0.2667 24 −0.0237 1.2881 −0.2644

Table 2. Fluctuating kinetic energy contributions: E′
sx and E′

sy , production by shear; E′
m,

dissipation by magnetic forces (l = 0.7 and l = 1.5, horizontal magnetic field, Pr = 0).

normalized kinetic energy budgets at thresholds can be written as

E′
sx + E′

sy + E′
m = 1, (5.1)

where E′
sx = −Re(

∫
S
u ∂W0

∂x
w∗ dx dy)/|Ed | and E′

sy = −Re(
∫

S
v ∂W0

∂y
w∗ dx dy)/|Ed | are

the productions of fluctuating kinetic energy by shear of the basic flow (E′
sx +

E′
sy = E′

s), and E′
m = Re(Ha2

∫
S
[(−∇φ +�v × eB0

) × eB0
]�v∗ dx dy)/|Ed | is the dissipation

of fluctuating kinetic energy by magnetic forces, all these terms being normalized by
the viscous dissipation of fluctuating kinetic energy Ed .

In tables 1–2, the different terms of the energy budget are given as a function of
Ha for situations at their critical thresholds, in the case of a vertical magnetic field
(l = 0.7 and l = 1) and in the case of a horizontal magnetic field (l =0.7 and l = 1.5).
In any case, the dominant destabilizing term is E′

sy , the production of fluctuating
kinetic energy by the vertical shear of the basic flow. E′

sx which is connected to the
horizontal shear, is slightly stabilizing. It is also really negligible with regard to E′

sy

(4 % at the most for the cases presented in tables 1–2). Concerning the stabilizing
magnetic term E′

m, its intensity increases with the increase of Ha but begins to level
off for Ha around 20. In any case, the values of |E′

m| remain moderate, reaching 25 %
of E′

sy at the most for the horizontal magnetic field where values of Ha up to 24 have
been used. As E′

sx remains small, the increase of E′
sy with Ha from 1 is similar to the

increase of |E′
m| from 0.

5.2. Energetic contributions to the critical Grashof number

The previous analysis has shown the relative importance of the terms in the fluctuating
kinetic energy budget and how they evolve when a magnetic field is applied. But this
analysis has not clarified the very different behaviours obtained with the two directions
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l = 0.7 l = 1

Ha R1 R2 Grc/Grc0
Ha R1 R2 Grc/Grc0

1 1.0438 1.0277 1.0727 1 1.0522 1.0075 1.0601
2 1.2874 1.0348 1.3322 2 1.2426 1.0192 1.2665
3 1.8833 1.0469 1.9716 3 1.6498 1.0361 1.7093
4 3.6430 1.0660 3.8835 5 2.1316 1.0732 2.2877

6 5.8161 1.0908 6.3442
7 9.9654 1.1066 11.028

Table 3. Characterization of the stabilization by a vertical magnetic field for l = 0.7 and l = 1
through the decomposition of the normalized critical Grashof number into two factors R1 and
R2, respectively, related to the shear energy and the magnetic energy (Pr = 0).

l = 0.7 l = 1.5

Ha R1 R2 Grc/Grc0
Ha R1 R2 Grc/Grc0

5 0.53712 1.0359 0.55638 5 0.96035 1.0713 1.0288
14 (min.) 0.22103 1.1883 0.26264 12 0.96575 1.2238 1.1819
24 0.34711 1.2667 0.43967 24 1.5076 1.2644 1.9062

Table 4. Characterization of the stabilization by a horizontal magnetic field for l = 0.7 and
l =1.5 through the decomposition of the normalized critical Grashof number into two factors
R1 and R2, respectively, related to the shear energy and the magnetic energy (Pr = 0).

of the magnetic field for Pr =0. Another approach is to express the critical Grashof
number in terms of energetic contributions. For that, noting that, for Pr =0, E′

s

(through W0) is proportional to Gr (E′
s = Gr E′′

s corresponding to W0 = Gr w0), we can
use (5.1) applied for Ha non zero and Ha =0 (subscript 0) to derive an expression for
Grc/Grc0

:

Grc

Grc0

= R1 R2, (5.2)

where

R1 =

(
E′′

s0

E′′
s

)
, R2 = 1 − E′

m. (5.3)

As E′
m < 0, the action of the magnetic field will increase Grc by the increase of R2 in

connection with the Lorentz forces. The action of the magnetic field will also modify
the velocity profile and the perturbations leading to a change of E′′

s and thus to a
change of R1 and Grc. Note that R1 and R2 are equal to 1 at Ha = 0.

The evolution with Ha of R1, R2 and Grc/Grc0
=R1 R2 are given in tables 3–4 for

the same cases as in the previous section. In any case, R2 increases with Ha, but in
a moderate way (values only slightly departing from 1), so that the evolution of the
thresholds with Ha is principally connected to the evolution of R1. For the vertical
magnetic field, R2 really remains close to 1 and the strong increase of the threshold
with Ha is explained by the strong increase of R1 (table 3). This type of behaviour has
already been obtained for an infinite layer (l → ∞) under vertical magnetic field by
Kaddeche et al. (2003). For the horizontal magnetic field in a cavity with l =0.7, the
initial decrease and further increase of the threshold with Ha is also explained by a
similar evolution found for R1 (table 4). The evolution of R2, although not dominant,
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Figure 11. Isolines of the shear energy SyG = Re(− ∂w0

∂y
v w∗)/|Ed | at threshold for l =0.7 and

Ha = 0 (Pr = 0). Solid lines indicate the zero isoline, and the increase between successive isolines
is 10−5.

has a greater influence for the horizontal magnetic field. For instance, for a cavity
with l = 1.5 (table 4), the small initial decrease of R1 is hidden by the increase of R2,
so that a continuous increase of the threshold with Ha is obtained.

All these indicate that it is the evolution of the energy generated by shear which
plays an important role in the evolution of the thresholds. Moreover as we have shown
that E′

sx � E′
sy , the main influence comes from E′′

sy = (
∫

S
Re(− ∂w0

∂y
v w∗) dx dy)/|Ed |.

We will now analyse this term by decomposing it into its main components, and thus
define three quantities, SyG = Re(− ∂w0

∂y
v w∗)/|Ed |, MG =(− ∂w0

∂y
) and F = Re(v w∗)/|Ed |,

which are such that

E′′
sy =

(∫
S

SyG dx dy

)
=

(∫
S

MG F dx dy

)
. (5.4)

SyG is the energy field due to the shear ∂w0

∂y
which gives E′′

sy by integration on the

section, MG is the factor depending on the basic flow (shear at constant Gr) and F is
the factor depending on the fluctuating flow (note that compared to Lyubimova et al.
2008, we have Sy =Gr SyG and M = Gr MG). We will also introduce two other quantities

related to the norm of the fluctuating velocity components, Fw =
√

(w w∗)/|Ed | and

Fv =
√

(v v∗)/|Ed |. This analysis of E′′
sy will be done for l = 0.7, as the influence of the

magnetic field direction is clearly important in this case.
The isovalues of SyG for l = 0.7 and Ha = 0 are first shown in figure 11. We see

that the energy is concentrated in a zone around the centre point of the section, and
that the values outside this zone are really small and then clearly negligible. Because
of this concentration of the energy, and as it would be difficult to clearly analyse the
evolution of the different terms with Ha from two-dimensional plots, we have chosen
to characterize these terms from one-dimensional profiles taken along the vertical
direction y in the centre of the section. The vertical profiles of SyG for l = 0.7 are
given in figure 12 for different values of Ha, in the case of the vertical magnetic field
(figure 12a) and in the case of the horizontal magnetic field (figure 12b). These plots
show the systematic decrease of SyG for the vertical magnetic field (figure 12a) and
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Figure 12. Vertical profiles of the shear energy SyG = Re(− ∂w0

∂y
v w∗)/|Ed | at threshold in the

centre of the cavity for a vertical magnetic field (a) and a horizontal magnetic field (b) (l = 0.7,
Pr = 0).

the initial increase and then decrease of SyG for the horizontal magnetic field (fig-
ure 12b). These variations are clearly connected to what was observed for R1 in tables
3–4, having in mind the definition of R1 (defined in (5.3)). In the same way, we
now plot the vertical profiles of MG and F in figure 13, and those of Fw and Fv in
figure 14. In figure 13(a, b), we see that the profiles of MG (shear at constant Gr)
decrease as Ha is increased for the two directions of the magnetic field, this effect
being quicker for the vertical field, but more pronounced for the horizontal field
because of the higher values of Ha. In fact, it is the evolution of F given in
figure 13(c, d) which is mainly responsible for what was observed on SyG. The last
step is to see the role of the fluctuating velocity components in the evolution of F .
Figure 14(a, b) shows that Fw principally decreases as Ha is increased for the two
directions of the magnetic field (except at small Ha where a small increase is obtained
for the horizontal field) whereas, as shown in figure 14(c, d), Fv has different behaviours
for the two directions of the field: it decreases for the vertical magnetic field, but
increases for the horizontal field.

We have thus seen that for the vertical magnetic field all the quantities Fw , Fv , F

and MG decrease as Ha is increased, leading to the decrease of SyG and E′′
sy , and then

to the increase of R1. Among these quantities, the product of the velocity fluctuations
normalized by the dissipation, represented by F , and more intimately the normalized
vertical velocity fluctuation seem to have the more important influence. Concerning
the horizontal magnetic field, the normalized vertical velocity fluctuation also plays
a crucial role. Its strong initial increase as Ha is increased (observed through Fv)
induces an initial increase of F and SyG, despite the decrease of Fw and MG, and
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Figure 13. Vertical profiles of MG = (− ∂w0

∂y
) (a, b) and F = Re(v w∗)/|Ed | (c, d ) at threshold in

the centre of the cavity for a vertical magnetic field (a, c) and a horizontal magnetic field (b, d )
(l = 0.7, Pr = 0).

is then responsible for the initial decrease of R1. For larger Ha, the increase of Fv

weakens and the general decrease of the other quantities induces an increase of R1.
In conclusion, we have shown that the evolution of the thresholds with the increase

of Ha is principally connected to the evolution of the fluctuating energy generated
by shear along the vertical direction. The evolution of this energy is, as expected,
influenced by the modification of the velocity profiles by the magnetic field, but it has
been shown that the main factor is in fact the modification of the fluctuating velocity
field, and before all the modification of the fluctuating vertical velocity.

6. Conclusion
The effect of a magnetic field on the steady convective flow driven by a longitudinal

temperature gradient in a horizontal channel of rectangular cross-section and on the
stability of this flow has been numerically studied.

The convective flow calculations have shown that the general type of steady
circulation obtained in the presence of a magnetic field is the same as in the absence
of magnetic field: in the lower part of the channel the fluid moves in the direction
of the imposed temperature gradient and in the upper part it moves in the opposite
direction. The intensity of the flow and the velocity distribution over the cross-section,
however, strongly depend on the magnetic field strength and direction.

In the case of a sufficiently strong vertical magnetic field, the convective flow is
concentrated near the cross-section corners such that actually, instead of two counter
flows there are four horizontal jets, two of them (the lower ones) coinciding with the
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Figure 14. Vertical profiles of Fw =
√

(w w∗)/|Ed | (a, b) and Fv =
√

(v v∗)/|Ed | (c, d ) at
threshold in the centre of the cavity for a vertical magnetic field (a, c) and a horizontal
magnetic field (b, d ) (l = 0.7, Pr = 0).

direction of the applied temperature gradient and the two others (the upper ones)
moving in the opposite direction. The flow intensity is subject to a fast decrease with
the growth of the magnetic field strength. Characteristic laws of variation can be
obtained which, due to the concentration of the flow in jets near the corners, turn
out to be different for the core flow and the jet flow, and proportional, respectively,
to Ha−2 and Ha−1.

The effect of the horizontal magnetic field on the steady convective flow is different.
A braking of the flow is obtained, but less effective than for the vertical magnetic
field. The changes of the flow structure are also not so sharp: we can principally
mention the decrease of the horizontal gradients of velocity in the central zone and
the growth of the gradients in the boundary layers which develop along the walls.

The linear stability analysis of these convective flows submitted to a magnetic field
has been performed for a Prandtl number Pr equal to 0 and different cross-section
widths, and for Pr in the range 0.01–0.15 in the case of a square cross-section.
Steady perturbations with a finite wavelength appear to be the most dangerous in
this parameter range, and, as expected from the decrease of the flow intensity and the
energy loss by Joule dissipation, the magnetic field has a stabilizing effect on these
perturbations in most part of the parameter range, the vertical magnetic field, with
exponential laws of stabilization, being more effective than the horizontal field. An
unexpected destabilizing influence of the magnetic field has however been obtained
for zero Prandtl number in the case of the horizontal magnetic field. The decrease
of the instability thresholds which is induced occurs as soon as the magnetic field is
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applied until moderate values of Ha and the effect is particularly strong when the
width of the channel is less than its height. This destabilizing effect is still present, but
weak, for a channel of square cross-section, and it vanishes quickly when the width
of the channel is further increased.

The analysis at threshold of the kinetic energy budget associated with the most
dangerous perturbations has shown that the dominant destabilizing contribution
comes in any case from the vertical shear of the longitudinal velocity, and that the
variations of the thresholds observed when a magnetic field is applied are principally
connected to the evolution of this shear term, and not much to the stabilizing
magnetic energy term. More precisely, in this shear term, the variation at threshold
of the product of the scaled velocity disturbances is a key factor: a strong decrease
of this product is found when Ha is increased in the case of the vertical magnetic
field at Pr = 0 which, combined with the natural decrease of the basic flow shear
with increasing Ha at constant Gr, explains the strong exponential increase of the
thresholds found in this case, whereas an increase of this product with Ha in the case
of the horizontal magnetic field at Pr= 0 explains the unexpected initial decrease of
the thresholds.

This work was funded by a fellowship from the Région Rhônes-Alpes (A.P.).
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